Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Palani, ${ }^{\text {a }}$ M. N. Ponnuswamy, ${ }^{\text {a }}$,

A. R. Suresh Babu, ${ }^{\text {b }}$
R. Raghunathan ${ }^{\text {b }}$ and M. Nethaji ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {c }}$ Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: mnpsy@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.074$
$w R$ factor $=0.130$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4'-(4-Methoxybenzoyl)-1'-methyldispiro-[indole-3(2H), 2^{\prime}-pyrrolidine- $3^{\prime}, 3^{\prime \prime}\left(2^{\prime \prime} H\right)$ -indole]-2, $2^{\prime \prime}$-dione

In the title compound, $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$, the pyrrolidine ring adopts a half-chair conformation. Inversion-related molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a zigzag chain. In addition, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds are observed.

Comment

Spiro-compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). In this paper, the crystal structure of the title compound, (I), is reported.

(I)

A ZORTEP (Zsolnai, 1997) plot of the molecule is shown in Fig. 1. The pyrrolidine ring adopts a half-chair conformation with puckering parameters $q_{2}=0.454$ (3) \AA and $\varphi_{2}=231.2(4)^{\circ}$ (Cremer \& Pople, 1975), and the asymmetry parameter $\Delta C_{2}(\mathrm{C} 26)=0.0167$ (1) (Nardelli, 1995). This puckering causes significant contraction of the $\mathrm{N} 1-\mathrm{C} 26-\mathrm{C} 18$ angle [105.3 (2) ${ }^{\circ}$]. The bond lengths in both oxindole ring systems indicate electron delocalization. The methoxy group is coplanar with the $\mathrm{C} 20-\mathrm{C} 25$ benzene ring $[\mathrm{C} 24-\mathrm{C} 23-\mathrm{O} 4-$ $\left.\mathrm{C} 27=-176.2(6)^{\circ}\right]$.

The crystal packing shows that inversion-related molecules are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a zigzag chain (Fig. 2). In addition, the packing is stabilized by C $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (Table 2).

Experimental

A mixture of (E)-3-(4'-methoxyphenacylidine)oxindole (1 mmol), isatin (indole-2,3-dione) (1 mmol), and sarcosine (N-methylglycine) (1 mmol) was refluxed in aqueous methonal for 3 h . On completion of the reaction the solvent was evaporated in a vacuum and the resulting crude product was purified by column chromatography using an n -

Received 17 October 2005 Accepted 17 November 2005 Online 23 November 2005

Figure 1
A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
hexane-ethyl acetate mixture (7:3) as eluent. The title compound was recrystallized from a methanol-chloroform mixture (2:1 v / v).

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{r}=453.48$
Monoclinic, $P 2_{1} / n$
$a=8.684(5) \AA$ 。
$b=11.485$ (7) \AA
$c=22.751$ (13) \AA
$\beta=90.852(10)^{\circ}$
$V=2269(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: none
17380 measured reflections
5167 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.130$
$S=1.19$
5167 reflections
399 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O2-C11	$1.223(3)$	$\mathrm{N} 1-\mathrm{C} 26$	$1.470(3)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.226(3)$	$\mathrm{C} 2-\mathrm{C} 10$	$1.573(4)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.346(3)$	$\mathrm{C} 10-\mathrm{C} 18$	$1.543(3)$
$\mathrm{N} 3-\mathrm{C} 11$	$1.349(3)$	$\mathrm{C} 18-\mathrm{C} 26$	$1.531(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.456(3)$		
C2-N1-C1	$116.2(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$119.1(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 26$	$108.7(2)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$119.1(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 26$	$114.0(2)$	$\mathrm{N} 1-\mathrm{C} 26-\mathrm{C} 18$	$105.3(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 10$	$99.98(19)$	$\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$122.4(3)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$122.4(3)$		
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 26$	$-51.4(4)$	$\mathrm{C} 27-\mathrm{O} 4-\mathrm{C} 23-\mathrm{C} 24$	$-176.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 26-\mathrm{C} 18$	$-150.2(3)$		

Figure 2
The crystal packing of (I), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded (dashed lines) chains. H atoms have been omitted.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C18-H18*O1	0.95 (2)	2.47 (2)	3.049 (4)	120 (2)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$	0.89 (3)	2.19 (3)	3.039 (3)	162 (3)
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.86 (3)	2.11 (3)	2.941 (4)	163 (2)
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2^{\text {iii }}$	0.93 (3)	2.57 (3)	3.421 (4)	151 (2)
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O}^{\text {iv }}$	0.94 (3)	2.53 (2)	3.464 (4)	169 (2)
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O}^{\text {v }}$	0.92 (3)	2.59 (3)	3.380 (4)	145 (2)
C14-H14 $\cdots{ }^{\text {C }} \mathrm{g}^{\text {iii }}$	0.97 (3)	2.76 (3)	3.610 (4)	146 (3)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y+1,-z$; (iii) $x+1, y, z$; (iv) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;(\mathrm{v})-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$. Note: $C g$ is the centroid of the C20-
C 25 ring.

H atoms were located in a difference Fourier map and refined isotropically. The ranges of $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths are 0.91 (3) -1.03 (4) A and 0.86 (3)-0.89 (3) \AA, respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic papers

ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

KP thanks the University Grants Commission (UCG) Herbal Science programme for financial support under the 'University with Potential for Excellence' scheme. The UGC and the Department of Science \& Technology (DST) are gratefully acknowledged for financial support to the Department of Crystallography and Biophysics under the UGC-SAP and DST-FIST programmes.

References

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358
James, D., Kunze, H. B. \& Faulker, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K. \& Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

